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ABSTRACT
Nowadays activity recognition on smartphones is ubiqui-
tously applied, for example to monitor personal health. The
smartphone’s sensors act as a foundation to provide infor-
mation on movements, the user’s location or direction. In-
corporating ultrasound sensing using the smartphone’s native
speaker and microphone provides additional means for per-
ceiving the environment and humans. In this paper, we out-
line possible usage scenarios for this new and promising sens-
ing modality. Based on a custom implementation, we provide
results on various experiments to assess the opportunities for
activity recognition systems. We discuss various limitations
and possibilities when wearing the smartphone on the hu-
man body. In stationary deployments, e.g. while placed on
a night desk, our implementation is able to detect movements
in proximities up to 2 m as well as discern several gestures
performed above the phone.
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INTRODUCTION
Streaming classification techniques are widely used in mobile
devices to recognize human behaviours and contexts. This
is extremely valuable to realize implicit interaction systems,
for example to support healthy and independent living. The
most important parameters to sense include indoor location,
gestures, heart-rate, or emergencies like falls.

Mobile devices bring along many sensors that can be used
for this purpose. However, interaction is mostly centered
around the device and information from the distant environ-
ment is harder to capture with integrated sensors. Besides
that, the applicability of certain sensors can be limited by the
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Figure 1: Ultrasound sensing using the smartphone’s native speaker and
microphone can be used to capture information in various scenarios: (1)
holding the phone, (2) carrying the phone on the body, and (3) stationary
deployments.

use-case. For example, camera-based systems induce privacy
issues and body-worn systems are sometimes inconvenient to
wear over long periods.

In this paper, we investigate the use of ultrasound to support
new, unobtrusive, sensing possibilities on the mobile phone
to overcome these issues. We present related work and ini-
tial experiments that outline opportunities for activity recog-
nition in wearable and stationary settings. In our exemplary
implementation we emit an ultrasound wave with the mobile
phone’s speaker. The phone’s microphone picks up the re-
flected signals and enables to derive information on objects at
distances up to 2 m. In order to demonstrate the capabilities
of ultrasound sensing, we use continuous-wave with a center
frequency at 20 KHz.

In the targeted scenario, a consumer-grade smartphone could
potentially nullify the need for additional hardware equip-
ment. It could realize new use-cases, such as detecting falls
while placing the smartphone on the night desk. This pro-
vides the consumer with a simple-to-execute solution that
can be installed conveniently as a single mobile application.
However, there are numerous challenges which are mainly



induced by the heterogeneity of target systems. Firstly, this
comprises the use of low-cost to high quality microphones
and speakers. Secondly, the target system’s software and
hardware capabilities are very different in terms of processing
power and battery runtime.

RELATED WORK
The use of ultrasound as a sensing modality has been widely
investigated in the research literature. In [8] the feasibility
and limitations of ultrasound sensing using mobile phones is
explored.

However, most previous works focus on custom-built sys-
tems, instead of consumer-grade devices without hardware
modifications. The signal analysis can be based on measur-
ing timespans until the signal reflects at an object. Exploit-
ing the Doppler shift caused by reflections at moving objects
can be a suitable indicator which is less sensitive to timing
constraints [23]. This enables to recognize body parts mov-
ing away or towards a sound pickup [11]. Ultrasound signals
from other devices allow for implementing active messaging
systems with the possibility to localize objects.

Gesture Recognition
Detecting finger and hand movements in free air is often
achieved by analyzing a backscattered ultrasound signal.
[15] apply ultrasonic waves to unobtrusively recognize one-
handed gestures on custom hardware. The authors employ the
Doppler effect caused by a moving human body part. Here,
a single transmitter and three receiver microphones are suffi-
cient to determine a 3D movement. Due to the availability of
ultrasound capabilities in consumer hardware, ultrasound ap-
proaches have also been ported to consumer smartphones and
laptops. SoundWave enables to recognize gestures in front
of the screen of an unmodified consumer-grade laptop [11].
Very similarly, Dolphin detects various gestures performed
above a consumer smartphone using the system’s speaker and
microphone [22]. Although the Doppler measurements are
not discriminant in theory, the authors also argue that left-
and right-swipe gestures can be classified on a per-user basis.

Activity Recognition, Localization & Context Awareness
In order to detect whole-body movements, worn nodes as well
as passively backscattered signals can be used. Multiple mi-
crophones allow for ranging and localization based on the an-
gle or time-difference of arrival. Tarzia et al. [30] use a simi-
lar technique to determine user presence near an unmodified
laptop. Using a measurement window of only 10 s results in
an accuracy of approximately 96 %, discriminating the two
classes of absence and presence. Extending the windows to
25 s almost exceeds perfect accuracy.

In WALRUS by Borriello et. al [5], an indoor localization ser-
vice was realized by leveraging the properties of ultrasound
and radio frequencies. In each room a pc emits wifi messages
and ultrasound pulses on a regular basis. As the mobile phone
only picks up the sound signal from the respective room the
user resides in, it can be related to the wifi message that was
used to activate the recording. A similar approach with con-
trary execution is presented in ASSIST [13]. Here, the phone

serves as the transmitter emitting a high frequency chirp sig-
nal, while several custom made receivers pick up the signal.
These are time synced via a Wifi network, which enables the
authors to use the difference in arrival time of the chirps to
estimate the smartphone location up to an error margin of
30 cm.

Using custom hardware, Kalgaonkar et al. [14] are able to de-
tect whether a person talks in front of an ultrasound Doppler
sensor. Sound propagations on human skin can be applied to
measure touches on gestures with combined hardware worn
on the finger and arm [18]. Attaching ultrasound emitters to
various parts of the body and a transceiver worn around the
neck enables the authors of [32] to derive various activities
like sitting and cleaning. Rossi et al. [26] measure the im-
pulse response of different environments with a mobile phone
to infer an indoor location. The authors are able to distinguish
between more than 20 rooms. Similarly on a smaller scale,
emitting sound and vibrations can be used to excite the un-
derlying surface of a device and thus enable localization [17].
Very recently, the authors of [19] presented an approach to
recognize sleeping apnoea using unmodified mobile phones.

Multi-Device Interaction
Ultrasound messaging and ranging represents a very conve-
nient way to identify and track multiple devices. Techniques
which use simple backscattering are not able to identify ob-
jects and thus leave a certain amount of ambiguity in their
results. Embedding information in emitted ultrasound signals
can thus enable for object and person localization [3]. Re-
lying on a secondary modality with faster wave propagation
enables to reliably calculate the absolute time-of-flight of the
ultrasound signal between two devices [5, 27, 12].

Approaches for device selection on mobile phones, e.g. by
exploiting the Doppler effect when pointing at a device, has
been investigate in [24, 29]. BeepBeep [20] solely relies on
ultrasound generated by smartphones, which supports rang-
ing other smartphones. When more than three objects are
involved, it is possible to determine a relative position based
on the information of multiple devices. Sensing device loca-
tion in a car was investigated by [33]: By classifying the mo-
bile phone’s position it is possible to differentiate between the
driver using the phone and a passenger. Reynolds et al. [25]
introduce an ultrasound position sensing system for tangible
objects above LCD-screens. The authors present interactive
’pucks’ that communicate by emitting and receiving ultra-
sound and reconstruct their position.

Alternative Technologies
The area of ultrasound sensing is closely related to radio-
frequency based techniques, as both are based on a wave
propagation [23]. The use-cases are very similar but require
a higher temporal resolution to analyze Doppler shifts and
time-of-flight measurements. Zhao et al. [34] and Kellogg et
al. [16] use the reflections of existing RF signals to recognize
various types of gestures. In stationary installations, gesture
recognition and indoor localizations was realized using re-
flections of radio waves by the human body [1, 21]. Refining
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Figure 2: An exemplary spectrogram: The Doppler-shift is caused by a waving hand in distances between 0.1 and 0.3 m atop the smartphone. At second 5.5, the
user claps both hands, resulting in a large noise overlay.

these techniques even enable to recognize speech or breath-
ing rate from a distance [2, 31]. Other techniques which are
suitable for recognizing the presence and proximity of objects
may also comprise quasi-electrostatic field measurements [9].

Summary
From a use-case perspective, ultrasound sensing has been ap-
plied to measure a great variety of environmental parameters.
The physical sensing setups are often based on custom hard-
ware, with a recent trend towards existing mobile devices like
laptops and smartphones. In contrast to previous works on
unmodified mobile phones, we provide an explorative view
on activity recognition in this paper. We conduct several ex-
periments to outline the method’s current opportunities and
particularly its limitations. We identified three major setups
for ultrasound sensing on mobile phones: (1) Stationary de-
ployments (e.g. on a table), (2) holding the phone in a hand,
and (3) carrying the phone on the body. In the following, we
will describe the experiments to investigate the different de-
ployments.

PHYSICAL PRINCIPLES OF DOPPLER SENSING
Currently established range and movement measurements are
often based on pulsed radar. Here, a short pulse or a burst
of short pulses is generated and the reflections are measured.
This technique allows for inferring distance measurements to
nearby objects. Other methods emit a continuous wave (CW)
with a fixed frequency or a frequency modulated continuous
wave (FMCW). The first technique easily allows for recog-
nizing Doppler effects caused by movements, while FMCW
also provides static distance measurements. In contrast to
FMCW and pulsed methods, simple CW does not induce de-
manding timing constraints and is easily realizable on a wide
range of smartphones. For this reason, we use continuous
wave modulation in our experiments.

A continuous wave, which can be a pure sine-wave with a fre-
quency f0 is sent out from the system’s speaker. We use the
low ultrasound range at 20 kHz, which is about the maximum
frequency that can be achieved with the phone’s hardware
components. A reflection from a moving target broadens
the frequency spectrum around the central carrier frequency,
which is called the Doppler frequency shift. An approaching
target induces a shortening of the received wave-front, which
means the frequency increases and a positive Doppler shift
is observed. Respectively, a departing target leads to an ex-
panded wave-front with a negative frequency shift. In order

to measure the Doppler frequency, Fast Fourier Transform
(FFT) is used. The number of samples NFFT used by the
Fast Fourier Transform (FFT) determines the individual bin
width of ∆f . The bin width determines further the resolution
of the measurable Doppler frequency.

Sampling an audio signal using the in-built microphone of
a smartphone can usually be conducted at a maximum fre-
quency of fs = 44.1 KHz. Regarding the Nyquist theorem,
the highest retrievable frequency for an ultrasound measure-
ment is fs

2 = 22.05 KHz. Since the human ear is typically
able to perceive sounds at frequencies up to 18 KHz [7], this
leaves us with an effective frequency range of 4.05 KHz. In
order to obtain a reasonable temporal resolution for gestures
and movements, we divide the signal into overlapping win-
dows (75 %) with a length of 93 ms. This corresponds to a
4096-point FFT with a bin resolution of 10.75 Hz. With a car-
rier frequency of 20 kHz, Doppler-shifts are observable with
a resolution of 0.09ms−1. In comparison, gestures in front
of laptops were observed with a speed up to 3.9ms−1 [11].

EXPERIMENTS
In this paper, we present various experiments leveraging the
above mentioned technique and discuss their benefit and lim-
itations. We analyze what kind of experiments can be con-
ducted using a stationary deployment of a mobile phone.
These include the recognition of hand gestures during which
the user actively interacts with the phone, as well as passive
interaction when determining activities in the vicinity of the
device. Additionally, we investigate the performance of our
approach when executing gestures while holding the phone
as well as while wearing it on the body, e.g. in the trouser
pocket.

The first part of experiments shows how the Doppler shift
can be used in a controlled setup and whether it is feasible for
gesture and activity recognition. The second part aims to test
real life scenarios where we expect a noisy signal. These tests
will show if our approach can overcome those obstacles. We
conducted the experiments on a ZTE Blade, an Asus Nexus
7, and a Samsung Galaxy S3 running Android 4/5.

Stationary Deployments - Gesture Recognition
For the first set of experiments, the phone is situated on a ta-
ble, while the user performs gestures above the phone. Due to
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(a) Downward motion.

0.2 0.4 0.6 0.8 1 1.2 1.4
Time, s

(b) Upward motion.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time, s

(c) Strong swipe motion. Right-to-
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(d) Weak swipe motion. Right-to-left
for left hand; Left-to-right for right
hand.

Figure 3: Broadening of the spectrum around the central carrier frequency. Thin lines indicate individual experiment runs, while the thick line represents the
mean of all runs. In addition, blue colored curves depict the broadening due to a positive Doppler shift while the green curves represent the negative shifts.

the Doppler frequency shift caused by the user’s hand move-
ment, we can determine whether the hand approaches or with-
draws from the device. For the downward motion, we expect
a positive shift in frequency as we approach the phone, while
an upward motion will cause a negative shift. This effect can
be qualitatively measured by thresholding the frequency am-
plitude and calculating the remaining bandwidth around the
central carrier frequency for each time step. A simple exam-
ple for this effect in shown in figure 3 displaying the broad-
ening of the spectrum around the central carrier frequency for
various gestures. Note that for these kind of diagrams, we de-
liberately abstained to quantize the vertical axis to direct the
focus on a qualitative interpretation of the results.

A central limitation of recognizing gesture via the Doppler
Frequency shift in combination with consumer mobile phone
is the fact that we can only determine the absolute change in
distance of an object to the device. For example approaching
the phone with the user’s hand can be done in any arbitrary
angle between the table and the velocity vector of the hand.
As long as the euclidean distance between the hand and the
phone changes at the same rate, one cannot distinguish these
motions by means of the Doppler Frequency shift. Figure
4a illustrates this challenge. At the start of the experiment
the user places both hands slightly above the phone and then
does a zoom out and zoom in movement by moving the hands
into opposite directions and back together again. The result-
ing shape is similar to a combination of up- and downward
motions, although we used two hands and moved them hori-
zontally with regard to the table.

However, slight variations in auxiliary movements can be
picked up by the system. For example, the movements of the
arm when doing a swipe gesture above the phone. Due to the
nature of the Doppler effect swiping from left-to-right should
be equal to swiping from right-to-left, hence these motions
should not be distinguishable. This holds true for the hand
movement, but not for the motion of the arm. Doing a right-
to-left swipe with the right arm is more natural than doing the
opposite swipe direction with the same arm. We performed
several experiments using swipe motion with both arms and
concluded that it is possible to distinguish the strong swiping
motion from the weak one. In this scenario, a strong swipe
motion would be the natural movements for the respective

0.5 1 1.5 2 2.5 3 3.5
Time, s

(a) Zoom out and zoom in gesture.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time, s

(b) Seesaw motion, including up- and
down motions at the same time.

Figure 4: Broadening of the spectrum for two-handed gestures.

arm, right-to-left for the right arm and left-to-right for the
left arm. The weak swipe motion follows analog: The re-
sults are presented in Figure 3c,3d and depict the motion of
the hand coming closer to the phone and going away again.
A swipe motion from right-to-left with the right hand can be
split into a fast (larger positive frequency shift) approaching
motion and a slower (smaller negative frequency shift) with-
draw motion. Generally speaking, the motion part that hap-
pens near the respective arm is executed faster and allows us
to distinguish strong and weak motion. In an application sce-
nario where swipes are executed using a predetermined hand,
one can in fact discern between different swiping directions.

An important advantage of our approach is the possibility to
recognize multiple different motions within the same time
frame. Executing a motion towards and away from the phone
at the same time results in two separate frequency shifts in
opposite directions. In this experiment two hands are used
to execute a downward and an upward motion at the same
time. Upon reaching the phone with one hand the respective
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(a) Walking by a phone at chest-height.
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(b) Walking away from a phone at knee-height.
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(c) Walking by a phone at knee-height.

Figure 5: Broadening of the spectrum for different motions.

motion are reversed. We call this the seesaw motion. Figure
4b illustrates this scenario and shows the respective positive
frequency shift for the hand going downwards as well as the
negative frequency shift for the hand doing the upward mo-
tion. In the end both hand come to rest in a middle position
at the same height resulting in a lower frequency shift due to
the slower movement.

Stationary Deployments - Motion Recognition
Besides recognizing hand gestures, we believe that the system
is able to perceive general motion or activities in the vicinity
of the mobile phone. To test this hypothesis we mimicked our
swipe motion during gesture recognition. In this experiment,
the phone is deployed on a table at chest-height and the sub-
ject simply walks by the table. The resulting graph, shown
in figure 5a, clearly depicts a motion towards and away from
the phone. This experiment was designed to mostly pick up
the motion of the upper body of a person. Although having a
similar appearance as Figure 3c (strong swipe gesture), both
can be clearly distinguished by including the duration of the
movement. In particular, walking by the phone takes almost
five seconds, while a swipe is generally executed way faster
at around one second.

To test whether the motion of individual body parts can be de-
tected as well we conducted another test run where the phone
is deployed on a lower table, approximately at knee-height,
while the subject walks away from the phone. Since the per-
son increasing the distance to the phone, the broadening of
the spectrum should show an overall negative Doppler shift,

which can be seen in figure 5b. It also shows single peak
shifts corresponding to the movement of each leg. These are
stronger the closer a subject is to the device, as the reflections
are easier to be picked up in close proximity.

Mimicking our first test in this series, we redid the walk-by
experiment with the phone placed on the lower table. We ex-
pect to pick up a stronger factor for the movement of individ-
ual body parts, like the legs, contrary to our first test, where
the phone was deployed on a table at chest-height. The graph
is shown in figure 5c and confirms our presumption. Clearly
visible are spikes of Doppler shifts caused by the - in compar-
ison to the overall - fast movements of each leg. Surprisingly,
it seems that each part of the motion (approaching and with-
drawing) has been shifted closer together. We conclude that
the device registers the motion of the upper body just as in the
previous experiment. However, this motion may get smeared
by individual leg motion, e.g. when the body still approaches
the phone, but one leg already past it.

Stationary Deployments - Activity Recognition
In this series of experiments, we aim to analyze more com-
plex activities with the gained knowledge. For the first test,
the user is laying on a bed and the mobile phone is deployed
on the nearby bedside table (at knee-height). We want to
know whether our approach can perceive subtle movements
of a person while asleep. By doing so, one could analyze
the sleeping rhythm of the user which could be beneficial for
estimating the best time to sound an alarm clock. Figure 6a
shows the broadening of the spectrum for a person moving
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(a) Sleeping Movement in a bed.
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(c) Excerpt of desk work.

Figure 6: Broadening of the spectrum for different user activities.

around on the bed, e.g. the subject changes from a face-down
lying position into a dorsal position. These motions are being
picked up by the device as Doppler shifts.

We want to combine this experiment with our motion experi-
ment by letting the subject get up from the bed and walk away
from it. The broadening of the spectrum for this experiment
is shown in figure 6b and is consistent with the executed mo-
tion. At first, we observe a positive shift due to the subject
standing up, hence decreasing distance to the phone. When
walking away, we register negative frequency shifts and sev-
eral peaks when the subjects moves each leg. Additionally
exaggerate arm movements may also be picked up.

In a last test run, we investigate our approach in the context
of everyday desk work. The user is instructed to work with
a computer at the desk as usual, while we observe the sig-
nal received by the mobile phone, which is also placed on
the table. For simplicity, we only show a part of the whole
recording in figure 6c. The graph depicts various positive and
negative Doppler shifts corresponding to hand and/or mouse
movements. In the spectrum itself, we observed large peaks
over the whole frequency spectrum indicating some sort of
noise produced by the user. In particular, pressing keys on
the keyboard may result in such sounds. To better differenti-
ate these from the measured Doppler shifts, we replaced these
peaks with yellow boxes in the figure. In some cases the peaks
come paired with positive and negative Doppler shifts. In our
scenario, the subject was drinking from a cup of coffee. The
movement of picking up the cup and placing it on the table

can be related to such a signal response.

This series of tests indicate that the system is able to perceive
general motion in the proximity as well as the movement of
individual body parts. Given an appropriate data set and cali-
bration, previously trained activities can be recognized.

Stationary Deployments - Range Limitation
This leads us to the question: What is the maximum distance
to the smartphone at which we can reliable detect a Doppler
shift, considering the noise from the received echo signal?
The setup sees a ASUS Nexus 7 placed on top of a shelf with
a height of 140 cm. This corresponds to the chest height of
an average man. In the experiment, test subjects were asked
to approach the device from different distances. We start at
250 cm away from the device and instruct the subject to get
closer in each following step. The step width is chosen to be
50 cm which is equivalent to a normal step width. We stop
the recording until we are close to the device. The result is
depicted in Figure 8 and shows the spectrum of the received
signal over time. However, it should be noted that the signal
is filtered with a digital notch filter at the center frequency of
20 kHz, so that the main component at this center frequency
coupled back from the device is reduced. The first peak ap-
pears at a distance of 200 cm away from the device and cor-
responds to the first step taken from 250 cm. The following
peaks are separated 50 cm from each other. Therefore, the
last peak is taken directly in front of the device. It should also
be mentioned that in order to increase the clarity of the plot,
only frequencies above 20 kHz are shown in Figure 8. Since



Time, s

F
re

q
u

en
cy

, 
H

z

0.5 1 1.5 2 2.5 3 3.5

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03

2.04

2.05
x 10

4
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(b) Holding the phone in one hand.

Time, s

F
re

q
u

en
cy

, 
H

z

0.5 1 1.5 2 2.5 3 3.5 4 4.5

1.96

1.97

1.98

1.99

2

2.01

2.02

2.03

2.04

2.05
x 10

4

(c) Walking while holding the phone.
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Figure 7: Received spectrogram after thresholding of waving gestures (up- and downward motion) for different scenarios
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Figure 8: Spectrum of a user approaching the ASUS Nexus 7 from certain
distance is depicted here. The first peak at time instance of 7 s corresponds
to a distance of 200 cm away from the mobile device. The following peaks
are separated 50 cm from each other till the person is standing right in front
of the device.

we approach the device, only positive Doppler shift have to
be evaluated.

Holding the Phone
Contrary to stationary deployment of the device, holding it
can provide an auxiliary input method via simple gestures.
For example up-, downward motions of the other hand in
front of the phone can be used to control the volume of a
music track or zooming into a map view. Swipe gestures
prove useful when sorting through some kind of catalog, like
a photo gallery or the mail folder. However, movements
are limited to one-handed gestures, while stationary deploy-
ment can make use of two-handed gestures or whole body
movement. We executed test runs using a wave-like (up- and
downward motion) and a swiping gesture and successfully
extracted the spectrum broadening as shown in stationary ex-
periment. Nevertheless, while holding the mobile phone in
one hand, we detected an increase in noise around the central
carrier frequency and the shifted signal. This is due to the un-
avoidable movement of the hand carrying the phone, causing

very small, irregular frequency shifts and thereby deteriorat-
ing the received signal.

We want to find out to what extend the movement of the
phone itself influences the received signal and prevents a reli-
able detection of gestures. In this series of experiments we
vary the amount of ‘noise movement’ while performing a
wave-like gesture (up- and downward motion). As a baseline
we perform the gesture while the phone rests on top of a table
(figure 7a). Additionally we execute the same gesture while
holding the phone in one hand (figure 7b) and while walk-
ing around (figure 7c). These experiments show that moving
the phone itself while recording gestures induces a lot of fre-
quency shift noise and hinders gesture recognition quite a lot.
Possible solutions would include the estimation of ‘walking
noise’ and subtract it later on to clean the signal. However,
this is only suitable while walking in wide areas. Narrow cor-
ridors, for example, may cause unintentional frequency shift
when walking by an open door.

Carrying the Phone on the Body
In this section we conduct experiments with mobile devices
carried on the body. In the first stage, we placed the mo-
bile phone inside the clothing. The mobile device was carried
in the pocket of a thin trouser. The device was put into the
pocket after the recording was started. Figure 9 shows an
extraction of the recording, where a hand is approaching the
mobile device and departing again. The same action was re-
peated for three times. Afterwards the recording was stopped.
However, it can be seen in figure 9, that through the thin mate-
rial, noise covers most of the echo signal. This effect hinders
the reliable recognition of gestures. For thicker trousers, like
jeans, no frequency shifts can be registered at all.

In the second stage of the experiment, we strap the mobile
device to a runner’s arm to measure his surroundings while
jogging. We hope to explore possibilities of distinguishing
the users’ environment, like e.g. urban area, woods or fields,
via the reflected signal. Results however show that a clear sig-
nal cannot be extracted due to the weak echo and high ‘noise
movement’, as discussed earlier. Furthermore, commercial
products to strap the device on the runner’s arm often cover
either the transmitter or the receiver, which weakens the out-
going or incoming signal. Here, noise estimation based on
the proximity of certain entities, as thoroughly researched in



Time, s

F
re

q
u

e
n

c
y
, 

H
z

 

 

0.5 1 1.5 2 2.5 3 3.5 4

1.985

1.99

1.995

2

2.005

2.01

2.015

2.02
x 10

4

M
a
g
n
it
u
d
e
, 
d
B

−60

−55

−50

−45

−40

−35

−30

−25

−20

−15

−10

Figure 9: Spectrogram of gestures performed on a mobile device put inside
a trouser pocket. The Doppler shifts have a very low magnitude but can be
recognized.

[28], might be applied to clean the incoming signal as well as
apply some form of calibration.

TECHNICAL CHALLENGES
Our experiments disclose that using the Doppler frequency
shift is a feasible technique to recognize gestures as well as
activities and general movement in the proximity of the de-
vice. In a constraint setup, e.g. a stationary deployment of
the mobile phone, the received signal is adequate to detect a
variety of gestures. Especially two-handed ones, where the
motion of each hand is diverse, are a domain where our ap-
proach has its advantages. On the other hand, real-life appli-
cations require some sort of noise handling depending on the
circumstances. Yet the technique is still usable if the phone
movement is not too excessive. Wearable applications on
the other hand induce greater challenges in signal process-
ing. The main limitation is due to strong noise via movement
or from user’s environment. As long as the mobile device is
placed inside the clothing, the signal strength is attenuated
through the clothing material. Furthermore, additional noise
from user’s own movements, like in case of the application
on a jogger’s arm, hinders the detection of additional Doppler
shifts from the environment.

Recursive Doppler Reflections
In addition to noise handling, some scenarios may require
the algorithm to consider and handle multiple reflections of
the emitted peak signal. To illustrate this effect to a higher
degree, we repeated the wave gesture using a large sheet of
paper. In this scenario, the original signal, emitted by the
mobile phone, gets reflected once upon reaching the paper.
This is the signal we receive via the device and it exhibits a
Doppler shift. However, it is reflected once more by the ta-
ble, making it seem like a weaker version of the original peak
signal, though including a Doppler shift. Again this signal is
subject to a Doppler frequency shift upon reaching the paper

making it look like there is another Doppler shift with dou-
ble the velocity of the first. The effects of this phenomena as
shown in Figure 10 can be observed more intensely when us-
ing large reflective surfaces. In a setup using hand gestures it
is more commonly witnessed as a second flare being present
at times when the hand is in close proximity of the phone (cf.
the visible flares on every second zero-crossing in Figure7a).
For known movements, this issue can be avoided by exclud-
ing multiples of the first frequency shift. However, if there is
in fact a second movement twice as fast, things can get am-
biguous and hinder reliable gesture recognition.
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Figure 10: Received spectrogram showing multiple reflections of the origi-
nal Doppler shift. For instance at 6 seconds, there are three distinct doppler
shifts visible. A fourth can be adumbrated. The maximum extend of the first
shift at this timestep is just lower that 1.99 x104 Hz. Every follow up shift
(around 1.975 x104 Hz and 1.96 x104 Hz) occurs due to multiple reflections
of the sent signal.

Missing Directivity
Newer smartphones include two or even three microphones.
It is difficult to determine the exact position of each micro-
phone for each device and address the right one. This is-
sue also applies to the position of the loudspeaker, leading
to a lack of generalizability between multiple devices. Using
a setup with more than one receiver or transmitter, e.g. as
shown in [4], could yield directivity by combining the regis-
tered measurements.

Quality of Hardware
Another negative aspect concerning a smartphone’s hardware
is their quality. Usually, the modules for microphone and
speaker have to be as small as possible for design purposes,
which restricts audio quality in both the listening and record-
ing domain. To compensate for this, a possible algorithm
must be robust to noisy data, especially since data from one
phone might be different in magnitude than from another even
when performing the same activity or gesture.

Occasionally, speaker and microphone are co-located, lead-
ing to unpredictable amplitude variations in the recording, as



pointed out by [19]. For experiments that require a stable am-
plitude, these kind of phones, e.g. the Galaxy Nexus, cannot
be utilized.

Furthermore, using the phone’s speakers at maximum output
increases the amount of eigenfrequency excitations, which
may fall into the human range of audibility and disturb the
user.

SUMMARY & FUTURE WORK
In this paper, we illustrated the feasibility of a smartphone
using its native microphone and speaker to recognize nearby
movements. We presented a number of experiments using ul-
trasound Doppler frequency shifts to detect gestures, general
motion and activities of a user. We showed that our approach
can be successfully applied in stationary setups or when hold-
ing the phone. When the phone is worn on the body, overlying
clothes may strongly attenuate the send and received signal.
Although we have not tested our approach on a wide range of
target platforms and with many users, our results represent a
starting point for other researchers.

In the future, we will investigate machine learning approaches
for detailed gesture or activity recognition. Using multiple
microphones, we aim to overcome some limitations in direc-
tivity and noise rejection. Especially extracting suitable fea-
ture vectors from the received signal would be hugely benefi-
cial and help generalizing the approach.

Moreover, we aim to integrate FMCW instead of just relying
on Doppler frequency shifts, which allow for absolute dis-
tance measurements but induces more timing constraints. Re-
cent research demonstrated promising results to detect sleep-
ing apnoea based on this technique [19]. Our next challenge
will be to recognize falls in front of a bed while the mobile
phone is placed on the night desk. This use-case has already
been investigated with acoustic features, which can be en-
riched by ultrasound sensing [6]. We also plan to develop
new generalizable object recognition and tracking algorithms,
similar to [10].
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